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mental results. They then empirically chose a value of 
JU=1.80 based on the experimental results of Au and 
found that this same value of JJL gives good results for Be. 
For the potential of (5) to reduce to Moliere's repre
sentation of the Thomas-Fermi potential ju=l. We 
have calculated the 1/e width corresponding to the 
experiments of Hanson et al. for all three values of fi. 
The results are shown in Table I where we have com
pared the 6n e of Moliere (for JU= 1.00) and Nigam et al. 
(for /z=1.12 and ^=1.80) as listed in Table II of 
Nigam et al. Scott6 has recalculated the results of 
Nigam et al. and obtains values very close to ours. He 

I. INTRODUCTION 

THIS paper is concerned with the application of 
functional analysis to the problem of scattering 

of "a single nonrelativistic particle by a fixed interaction 
V. Our purpose when we began this work was to provide 
a rigorous justification for the "quasiparticle method" 
presented by one of us in previous papers.1-2 The sticky 
point was that the scattering kernel [W—H<f]~lV is not 
even bounded in the physical scattering region W^O, 
though it is L2 for all other W. We overcome this 
problem here by using a new "symmetrized" kernel3 

V$[W-Ho]-lV$, 

which is L2 for all W. (Sec. II and IV.) 
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2 S. Weinberg, Phys. Rev. 131, 440 (1963). 
3 While this paper was being written we received a preprint by 

F. Coester, Phys. Rev. 133, B1516 (1964), who uses essentially the 
same idea. He factors the potential as V= Vi+) F ( _ ) , and studies the 
kernel V^IW-H^'W^. The advantage in our choosing V^ 
= y(-> = 7* is that it minimizes the L2 norm of the scattering 
kernel, thereby giving a superior lower bound on the radius of 
convergence of the Born series. The first author to use V$ symme-
triz ation appears to be J. Schwinger [Proc. Natl. Acad. Sci. U. S. 
47, 122 (1961)], who employed it to study the bound state 

obtains 01/e=4.O5° and 3.71° for Au and 4.50° and 4.21° 
for Be with n—1.12 and 1.80, respectively, compared to 
our results of 4.06° and 3.72° for Au and 4.55° and 
4.28° for Be. In Table II some numerical values of the 
first two terms of (16) are given. The fact that the 
Thomas-Fermi function falls off so slowly with distance 
and hence is unrealistic for small-angle scattering 
probably accounts for the lack of agreement with 
experiment for fx~ 1. The agreement of our results with 
those of the Nigam et al. theory (as recalculated by 
Scott) is due to the similarity in functional form 
between (1) and (5). 

Having solved our original problem in this way, we 
£ were pleased to find a number of useful by-products: 

(1) We give an explicit lower bound on the radius of 
x convergence of the ordinary Born series for all energies. 
, This had previously been done for the bound-state 
> problem2 but not for the scattering problem (Sec. III). 
T In fact, we give explicit upper bounds on the ^th order 
t terms of the Fredholm and Born series (Sec. V), which 

should be useful for practical calculations. 
s (2) We do the same for the Born series modified by 

the introduction of a "quasiparticle," so that it is pos
sible to be certain that the modified Born series con
verges (Sec. IV). 

(3) We show that all these expansions [Fredholm, 
quasi-Born, and, for weak enough interactions, ordinary 
Born] converge uniformly in the physical region of 

[~ energy and momentum transfer (Sec. V). 
Most of our work is applicable to very general 

interactions, but we give special attention to the case of 
a local (not necessarily central) potential F(r), subject 

problem. The general idea of performing similarity transforma
tions on the scattering kernel has also been discussed by L. 
Brown, D. Fivel, B. W. Lee, and R. Sawyer [Ann. Phys. (N. Y.) 
23, 167 (1963)]. These last authors concentrate on the kernel 
[W—Ho]~ty[_W—BoJr*', in this connection see also footnote 8 of 
Ref. 2 and B. Lee, in Theoretical Physics [International Atomic 
Energy Agency, Vienna, 1963], p. 331. However, the kernel 
IW-HOTIVIW-BOT* is not U for TF>0. 
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We formulate the nonrelativistic scattering problem as an integral equation with a kernel which is com
pletely continuous for all energies. We then are able to give a rigorous justification for the Fredholm 
method, quasiparticle method, and, for weak enough interactions, the Born expansion. We also give an ex
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to the conditions: 

/ 

i n r ) | | F ( r ' ) | 
- < C C , 

r—r 

/ 
<Pr\V(r)\<<x>, 

( l .D 

(1.2) 

These hold if V(r) is e(r~2+€) for r -> 0, and 0(r~3-e) for 
r—>oo. Condition (1.1) is needed for the symmetrized 
kernel to be L2 for all energy, while (1.2) guarantees that 
all state vectors of interest have finite and uniformly 
bounded norm. 

I t is probably straightforward to apply these ideas to 
the multiparticle scattering problem, by "symme
trizing" the full irreducible connected kernel4 rather 
than the Lippmann-Schwinger kernel. We hope to dis
cuss multiparticle problems as well as the relativistic 
Bethe-Salpeter problem in future articles. 

II. THE COMPLETELY CONTINUOUS 
SCATTERING KERNEL 

Let us first recall the difficulties encountered with the 
usual operator Lippmann-Schwinger equation. 

T(W)=V+T(W)Go(W)V=V+VGo(W)T(W). (2.1) 

Here V is the interaction, and GQ(W) is the free-particle 
Green's function at energy W. 

G0(W) = [W-H0-]-K (2.2) 

In position space5 

< f | G . ( W 0 | r > = — - [ffip 
\2ir) j 

e x p p p . Q r ' - r ) ] 

W-p2 

exp(ik\r— r ' | ) 

4 7 r | r - r ' | 

with k defined by 

W=k2: lmik>0. 

(2.3) 

(2.4) 

We will be particularly (but not exclusively) interested 
in the case of local V, with 

(i'\V\r) = S3(i'-r)V(r). (2.5) 

The S matrix at a physical energy E>0 is calculated 
from the formula 

(P , | ^ | p ) = 5 3 (p ' -p ) -27 r^ (p 2 -p / 2 ) 
X<p' | r (p*+;e) |p>. (2.6) 

The "ie" in (2.6) is understood to mean that k in (2.3) 
is chosen as the limit of (p2+ie)* as e —> 0 + , i.e., 

* = + | p | - (2.7) 

4 S. Weinberg, Phys. Rev. 133, B232 (1964). 
5 We use units with fi=2m = 1. 

Equations like (2.1) are perfectly tractable if the 
kernel is completely continuous, and, in particular, if it 
is "L2." The kernel of (2.1) is 

K(W) = Go(W)V (2.8) 

and its L2 norm is 

Tr{K(W)K*(W)} = Tr{GoHW)Go(W)VV*} (2.9) 

or for local potentials 

Tr{K(W)Ki(W)} 

1 

16TT2 

1 r r exp(— 2 Im&lr— r ' l ) 
— / dh \ dh' - I F(r ) 12 

w2J J | r — r ' i 2 

= - {dh\V(r)\2. (2.10) 
8TT Imfe J 

If F(r) is square-integrable, then this trace is finite for 
W negative (the bound-state region) or W complex, but 
for W=p2+ie, it blows up as e"1 for e —> 0. Since K(W) 
is not L2 in the scattering region (in fact it is an un
bounded operator), it was necessary in earlier work to 
appeal to an imperfectly rigorous analytic continuation 
from complex to real W to justify the treatment of 
K(p2+ie) as if it were completely continuous. Another 
difficulty with the usual formulation of scattering theory 
is that the matrix element (p' | T \ p) is taken between 
continuum states whose wave functions e ip ' r, eip''T are 
not normalizable, and hence not in Hilbert space. 

Instead of K(W), let us define a new "symmetrized" 
kernel3 

.K(W)=V*Go(W)V*. (2.11) 

For local potentials this gives in position space 

(t'\K(W)\r)^-VKr')VHr} 
exp(i&| r— r ' | ) 

4 7 r | r - r ' | 
(2.12) 

Either sign can be taken for F*(r ') ; the fact that F*(r) 
is imaginary where V(r) is negative will cause no 
trouble. 

I t is easy to see that (2.1) has the formal solution 

T(W)=V*il-K(W)J'iV* (2.13) 

giving the 5 matrix 

(p ' | 5 |p ) = 5 3 (p , -p ) -27 r^ (p 2 -p / 2 ) 

X(p , | F C l - ^ ( p 2 + ; e ) ] - i F * | p > . (2.14) 

The reader may rest assured that the ugly operator V% 
will not appear in actual calculations of the S matrix. 
For instance, the series expansion of (2.13) in powers 
oiK(W)is 

T(W)= V*tl+K(W)+K(W)2+ • • - ]F* 

= V+VGo(W)V+VGo(W)VG0(W)V+' • • (2.15) 

and this is just the ordinary Born series. We will see in 
Sees. IV and V that the Fredholm and quasiparticle 
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series for (2.13) are the same as they were before the 
syrnmetrization of the kernel; the general reason is that 
K(W) and K(W) are related by a formal similarity 
transformation. 

K(J/y)V*=V*K(W). (2.16) 

There are three great advantages in using Eq. (2.14) 
as the starting point of scattering theory: 

(a) The kernel K (W) is L2 for decent interactions. I ts 
L2 norm is 

f(W)=Tr{K(W)fr(W)} 

= Tr{V*V*Go(W)V*V*Go(W*)}. (2.17) 

In contrast with (2.9), f{W) does not generally diverge 
as W approaches the positive real axis, since the danger
ous denominators [W—Ho] and [W* — £T0] are kept 
apart. For example, if V is a local potential, (2.17) gives 

f(W) = [d?rd?rf 

16TT27 

I V(r)\\V(r')|exp(-2Im£|r-r'|) 
X • , (2.18) 

r—r 

and for W=p2+ie, this takes the ^-independent value 

1 

1 6 T T 2 

dhdhf-
V(x)\\V{r')\ 

r - r r | 2 
(2.19) 

This integral is obviously finite for reasonable V(r), like 
the Yukawa potential (but, unfortunately, not for the 
Coulomb potential). Specific examples will be worked 
out in Sec. I I I . 

08) In the bound-state region W<0, both K(W) and 
K(W) may be L2, but K(W) always has the smaller L2 

norm. Hence the condition that f(W) be finite is weaker 
than our previous condition that V(i) be square-
integrable. Also the condition f(—B)>l gives a better 
upper bound on the binding energy B of bound states 
than previously given in Eq. (132) of Ref. 2. [Schwinger3 

has shown that the number of bound states below ~B 
is less than f(—B).~] 

(y) The S matrix is a matrix element of [1 — K{W)~\~l 

between states that actually lie in Hilbert space, since 
the state vector V*\p) appearing in (2.14) has norm 

l|F*|p>||2=<p|FitF*|p> 

or for local potentials 

I IV 
* * - & ! • 

dh\V(T)\. 

(2.20) 

(2.21) 

This norm exists for decent short-range interactions like 
the Yukawa potential. 

These two facts, that K(W) is L2 and F*|p> is 
normalizable, allow us without further ado to apply 
the standard lore of functional analysis6 to the operator 

6 For a survey and additional references, see Appendix A of 
Ref. 4. 

\\—K(W)~Yl and its matrix elements. In particular, it 
follows immediately that the S matrix for interaction 
\V is a meromorphic function of the coupling constant 
X, for all real or complex W. I ts poles are at the X values 

\ = r)v~
l(W), (2.22) 

where the rjv(W) are the eigenvalues of K(W). 

K(W) I*,{W)) = ri,(W) |*,(W0>, (2.23) 

or for local potentials 

F*(r) r exp(^|r-r,l) 
' dV F K r ' ) ^ ( r ' ; W) 

(2.24) 
47r J I r— r' i 

MT;W)=S(T\$,(W)). 

The eigenvector \$?V(W)) is, of course, understood to lie 
in Hilbert space, i.e., to have finite norm 

II*, WIN j\ ̂ ( r ; W 0 [ 2 ( P r < o o . (2.25) 

I t may be noted that the rjv(W) can also be described 
as the eigenvalues of the original kernel K(W), since 
(2.23) can be written 

|#,(W0HW,(W0>, (2.26) 
K(W)\*v(W)) = Vv(W)\*v(W)). (2.27) 

However, the normalizability condition (2.25) now reads 

||7*|*,(P»0>II<«, (2-28) 
or for local potentials 

fdsr\V(r)Uv(r;W)\2<^. (2.29) 

I t is easy to see that \pv(r\W) behaves like eikr as 
r —>oo ; hence, for real k the integrating factor | V(r) \ in 
(2.29) is indispensable to obtain a finite norm. 

The implications of (a) and (y) for the various series 
expansions of the S matrix will be considered in Sees. IV 
and V. 

III. RADIUS OF CONVERGENCE 

We now turn to a calculation of the Z,2-norm f(W), 
given by (2.18). This is a matter of some practical im
portance, because all eigenvalues r)p(W) of K(W) are 
subject to the inequality 

\v,(W)\*£f(W). (3.1) 

The radius of convergence R{W) of the Born series for 
an interaction W at energy W is equal to the smallest 
I Vv(W) |"~S so (3.1) provides a lower bound on the radius 
of convergence. 

R(W)^f-*(W). (3.2) 
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This inequality is particularly useful because we shall 
find that in practice f~*(W) is only slightly less than the 
exact R(W). 

Instead of calculating (2.18) directly, it is easier to 
return to (2.17), and write it in momentum space as 

so (3.7) is 

f(W)= fflpfflp'-
;^ (P-P ' ) I 2 

{W-tf)(W*-v">) 
(3-3) 

= [d?q\U(q)\* 

1 

x KP-
where 

( ^ - p 2 ) [ ^ * - ( p - q ) 2 ] 

Z7(q)=(27r)-3 dh\V(r)\e^ 

, (3.4) 

(3.5) 

The p integral in (3.4) can be done by Feynman's 
method, yielding 

f(W) = 2TT2 / d\ | U(q) | 2 arctan 
\2 Imk. 

q. (3.6) 

We see again that f(W) depends only on Im(PF)% and 
that for W>0 it becomes JF-independent. 

f=**jd*q\U(q)\*/q. (3.7) 

For all complex or negative W we have 

f(W)^f, (3.S) 

so f~~* is a lower bound on the radius of convergence for 
all W. 

We are assuming that (2.21) converges, so U(p) is 
finite for all p. The integral (3.7) for f will then exist if, 
as |p|—>oo? 

U(p)=0(\p\-*-*) ( a n y e > 0 ) , (3.9) 

and this will hold if, as | r | —» 0, 

7 ( r ) = 0(|r |-2+<) (any e > 0 ) . (3.10) 

The condition that (2.21) converges will be satisfied if 
V(r) is finite for all finite r, satisfies (3.10), and if, as 
| r | ->oo, 

F ( r ) = 0 ( | r | - 3 - < ) (anye>0) . (3.11) 

We will consider two particular examples, the Yukawa 
potential 

\V(r) = \»e-^/r (Y) (3.12) 

and the exponential potential 

X7(r) = X/Ar"r (E) . 

In these cases (3.5) gives, respectively, 

U(p) = v/2**(j?+n*) (Y), (3.14) 

^ (p) = M3A2(/>2+M
2)2 (E) , (3.15) 

f = i (Y), (3.16) 

f = f (E) . (3.17) 

We conclude that the Born series converges for all W if 

| X | g v 2 = 1.414 (Y), (3.18) 

| X | ^ ( i ) * = 1.225 (E) . (3.19) 

These results may be compared with the known7 exact 
radii of convergence (at W=0, where they are smallest). 

£(0) = 1.680 (Y), 

R(0) = 1.446 (E) . 

(3.20) 

(3.21) 

In both cases f~* is only about 15% smaller than the 
true radius of convergence. 

To see why f~* is so close to R(0), it will be illumi
nating to consider another example. Let V be an 
Hermitian separable interaction 

X7=X|a)<a| , (3.22) 

(a\a)=l. 

The symmetrized kernel is proportional to V. 

K(W) = (a\Go(W)\a)\a)(a\ . (3.23) 

Obviously, (a\Go(W)\a) is the greatest eigenvalue of 
K(W), and furthermore 

f(W)=\(a\Go(W)\a)\\ (3.24) 

so f~*(W) is the exact radius of convergence for (3.22). 
The close agreement between f~* and R(Q) for the 
Yukawa and exponential potentials can therefore be 
traced to the fact that such potentials are effectively 
separable at low energies,8 in the sense that one of the 
eigenvalues rjv(W) is much larger than all the others. 

For local central potentials the radius of convergence 
in the Ith partial wave is greater than fr*(W), where 
fi{W) is the /-wave L2 norm. 

fl(W)=\k\*f r*\V(r)\dr 
Jo 

X / r'*\V(r')\dr'\ji(krJhP(kr>)\*. (3.25) 
Jo 

This gives an even better lower bound on the radius of 
convergence, since each ri(W) is less than T(W); in 
fact, 

f(W)=Z(2l+l)fiQV). 
1=0 

(3.26) 

(3.13) [Note that fi{W) depends on W even for W real, though 

7 The Yukawa value is from L. Hulthen and K. V. Laurikainen, 
Rev. Mod. Phys. 23, 1 (1951), and the exponential value is from 
T-Y. Wu and T. Ohmura, Quantum Theory of Scattering [Prentice-
Hall, Englewood Cliffs, New Jersey, 1962], p. 80. 

8 M. Scadron and S. Weinberg, Phys. Rev. 133, B1589 (1964). 
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f(W) does not.] At zero energy (3.25) is 

1 
Tl (0) = V(r)\dr . |F(/)|<frV<2i+!V>-2 ' 

i x2l+2 [ \V(r)\\V (xr) | r3dr. (3.27) 
Jo Jo (21+iy 

For the Yukawa and exponential potentials [(3.12) and 
(3.13)], Eq. (3.27) gives 

f«(0) = 
(21+1)* Jo (1+x) 

-dx (Y) , (3.28) 

Tl (0) = -
12 1 ^2 Z+2 

-<& (E). (3.29) 
(21+iyJo (i+xy 

For S waves this gives 

fo(0) = 2 1 n 2 - l ; f<r*(0) = 1.609 (Y), (3.30) 

*o(0) = J ; f0-*(0) = 1.414 (E) . (3.31) 

The exact radii of convergence7 are, respectively, 1.680 
and 1.446, just a few percent above ftT^O). For p waves 
(3.28) and (3.29) give 

2 4 
fo(0) = - l n 2 — ; f<r*(0) = 7.533 (Y), (3.32) 

3 9 

67 16 
*o(0) = ln2; f<r*(0) = 6.239 (E) . (3.33) 

18 3 

The value (3.32) compares favorably with the known9 

zero energy ^>~wave Yukawa radius of convergence, 
£ ( 0 ) ^ 9 . 1 . 

IV. THE QUASIPARTICLE METHOD 

The quasiparticle method2 may be described for our 
present purposes as the replacement of K(W) by a 
kernel KQ(W), which differs by a term of finite rank. 

KQ(W)=K(W)-Z Vi\s)(s\VK (4.1) 
« 

Here | s) and (s | are a finite set of state vectors (perhaps 
JF-dependent) that can be chosen as we like. I t is easy 
to show that 

nW) = TQ(W)+ZTQ(W)\s) 
s,sf 

XA.AW\TQ(W), (4.2) 

ZA-1(W)l„^6„.-(*\TQ(W)\s), (4.3) 

TQ{W)^V-[\-KQ{W)~]-WK (4.4) 

The point is to choose the | s) and (s | so that (4.4) may 

be calculated by expansion in KQ(W). 

TQ(W)=V^l+KQ(W)+KQ(Wy+ - "2VK (4.5) 

= V+{VG0(W)V-j: V\S)(S\ F } + . • • . (4.6) 

This is always possible because K(W) is completely 
continuous for all W, and hence may always be ap
proximated uniformly by a kernel of finite rank; that 
is, it is possible for all W to choose | s) and (s | so that 
I I ^ Q ( ^ 0 I I i s a s small as we like, and in particular, so that 
I I ^ Q ( W 0 I I < 1 - I n the original work on the quasiparticle 
method, K(W) was used instead of K(W), and it was 
necessary to resort to hand-waving to discuss real 
scattering energies, for which K(W) is not completely 
continuous. [ I t should perhaps be emphasized that 
(4.1)-(4.6) are just a rewritten version of the original 
quasiparticle method, but the method is now rigorously 
justified.] 

How should we choose the | s) and (s \ ? Our previous 
answer2 was that we should try to reduce all eigenvalues 
Vs(W) with |i7s(PF) | > 1 to zero, and leave all the other 
7]p(W) unchanged. For instance, if only one eigenvalue 
T]I(W) lies outside the unit circle, then the "ideal" choice 
according to this prescription would be 

| i>H*iW>; <i |«<*i0ni (4.7) 
with normalization and phase chosen so that 

< l | 7 | l > = ^i(W0. (4.8) 

We have already done some practical calculations,8 

choosing 

\l) = Go(W)V\T(W)); < I | = < r 0 f 0 | , (4.9) 

where | r (W)) a n d ( r (W0| w e r e a n educated guess at 
\ipi(W)) and tyi(W*) \, with normalization 

(T(W)\V\V(W))=l. (4.10) 

9 This can be obtained from the graph on p. 481, C. Lovelace and 
D. Masson, Nuovo Cimento 26, 472 (1962). 

[This would agree with (4.8) if |T) and ( r | were exact 
eigenfunctions.] The results obtained in lowest order 
were excellent, but we were then unable to say with 
mathematical certainty that we had succeeded in 
making the series (4.5) converge. 

However, we can be certain that (4.5) converges if 

r « ( W 0 < l , (4.H) 

where TQ(W) is the D norm of KQ(W). 

TQ(W) = Tx{KQ(W)KQ{Wy) 

= f(W)-2ReZ(s\ViV^Go(W*)Vim\s) 
s 

+ Z (s'\VWi\s)(s\ 7*7*t|«'>. (4.12) 
s,s' 

With a good guess at the form of | s) and (s \, it should be 
easy to adjust their normalization and phase so that 
(4.11) is satisfied. 
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V. UNIFORM CONVERGENCE OF THE 
RESOLVENT EXPANSIONS 

Since K(W) is an L2 kernel for all W, we are rigorously 
justified in evaluating the resolvent [1— K{W)~]~l by 
the modified Fredholm formulas.10 

{l-K{W)~]~^ 1+N(W)/D(W), (5.1) 

n{w)=Y.nn{w), (5.2) 

D{W)=Y.Dn(W), (5.3) 

the operators Nn(W) and the functions Dn(W) being 
given by the recursion relations 

Dn+1(W)=-
1 

»+l 
• Tr{ftn(W)-Dn(W)K(W)}, (5.4) 

Nn+i(W) = lDn+1(W)+Nn(W)-]K(W), 

D0(W) = 1; ff0(W)=K(W)-

(5.5) 

(5.6) 

I t is easy to see that the Fredholm numerator and 
denominator for K(W) are related to the numerator 
N(W) and denominator D(W) for the original kernel 
K(W), by 

N(W)V*=V*N(W), (5.7) 

D(W) = D(W) (5.8) 

so that the T operator (2.13) is 

T(W)=v+ v*ff(w) vyD (w) 
= V+ VN(W)/D(W). (5.9) 

Hence, symmetrization affords an easy and yet rigorous 
proof for the applicability of the usual Fredholm 
method. 

But symmetrization does even more. I t is well known 
that the Fredholm series for fit (W) converges uniformly 
in Hilbert space because the L2 norm of the nth term is 
bounded by10 

Tr{Nn(W)Nn(Wy} ^n-nZef(W)~]n+1. (5.10) 

I t follows from (5.9), (5.10), and (2.21) that for local 
potentials the » + l t h term in the numerator of the T 
matrix is bounded by 

\(vf\ViNn(W)V^\p) 

^n-^2lef(W)Jn^i2(2w)~" f d?r\ V(r) | . (5.11) 

Also, the nth term of the denominator is bounded by10 

\Dn(W) | ^»-» ' 2[ef(W0] ( n + 1 ) / 2 . (5.12) 

Using (3.8), let us write these inequalities as 

|<P'|FW„(WOF*IP>I 

^frni2lefjn+1^2(2w)-d (dh\ 7 ( r ) | , (5.13) 

\Dn(W) | ^rrni2[efJn+»<2. (5.14) 

So we see that the Fredholm expansions converge uni
formly in p', p, and W. This result has been obtained 
before,11 but by a tortuous method and under strongly 
restrictive conditions on the potential. 

Uniform convergence is not restricted to the Fredholm 
expansions. Let us suppose, for example, that the inter
action is sufficiently weak so that 

f < l . (5.15) 

Then the ordinary Born series converges uniformly in 
Hilbert space, because 

\ii-K(w)y-i-j:K(w)i\ 

^ f W + u / i / ( l - f i ) . (5.16) 

Using (2.21) again gives 

K P ' I W ) | P > 

~(p'\V+VGo(W)V+- • • F ( G o W F ) J V | p ) | 

"(l-f*)(2T)» 

f(N+l)/2 r-

^ <Pr\V(i)\, (5.17) 
( l - f^ ) (27r ) 3 i 

so (5.15) ensures that the ordinary Born series converges 
uniformly in p', p, and W. [[The series actually con
verges uniformly whenever it converges, even if f > l . ] 

In the same way, the modified Born series (4.5) for 
TQ (W) will converge uniformly in p, p ; and in W as long 
asr0(WO<l. 

These uniformity properties are useful, both for 
practical calculations, and for the study of analyticity 
properties12 of the S matrix. 

Note added in proof. After this article was submitted 
for publication, we were informed that the idea of V112 

symmetrization had been used to study the scattering 
problem by A. Grossman and T. Wu, J. Math. Phys. 
2, 710 (1961), and by K. Meetz, J. Math. Phys. 3, 690 
(1962). (We are grateful to F. J. Dyson and K. Chadan 
for these references.) Our emphasis in this article is 
rather different, and most of our applications are new. 
Dyson also points out that the Banach space approach 
of W. Hunziker [Helv. Phys. Acta 34, 593 (1961)] may 
suit scattering problems more naturally than the 
Hilbert space approach described here. 

10 F. Smithies, Integral Equations (Cambridge University Press, 
New^York, 1958). 

11 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951); N. Khuri, 
Phys. Rev. 107, 1148 (1957). 

12 R. Blankenbecler, M. L. Goldberger, N. Khuri, and S. B, 
Treiman, Ann, Phys. (N. Y.) 10, 62 (1960). 


